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Abstract The seismic fragility of base-isolated structures subjected to near-fault forward-
directivity ground motions is investigated. A general framework for deriving the system-
level fragility curve is proposed, where the vulnerability contributions of multiple inter-
related components to the overall system are incorporated. In this framework, the joint 
probabilistic seismic demand model (JPSDM) is established, where the joint probability 
distribution of multiple engineering demand parameters (EDPs), conditioned on the inten-
sity measure (IM) level, is characterized via copula approach, and the sampling-based 
JPSDM, along with the capacity models of these components, is employed to generate the 
overall system fragility curves. This proposed framework is applied in the case study of a 
typical seismically-isolated RC frame structure, where the peak lateral displacement in the 
base-isolation layer and the maximum inter-story drift in the superstructure are considered 
as the two major component EDPs. The analysis results indicate that the combination of t 
copula, which is quantitatively identified as the best-fit copula function, and the conditional 
lognormal marginal distribution adequately captures the joint probability distribution of 
these two EDPs conditioned on the IM level. Moreover, the impact of different copulas 
selection on the system-level fragility varies depending on the relative fragility contribu-
tions of different components in the overall system.
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1 Introduction

Seismic isolation has been widely utilized in new construction and seismic rehabilitation 
of existing ones, as well as seismic performance enhancement of critical facilities. The 
introduction of base-isolation bearings can effectively decouple the superstructure from 
the intensive ground motion shakings and significantly reduce the seismic inertial forces 
transferred to it. Near-fault forward-directivity (NFFD) ground motions are characterized 
by short-duration, large-amplitude and long-period velocity pulses (Bray and Rodriguez-
Marek 2004), whose periods may approximate to or even coincide with those of base-iso-
lated structures, leading to excessive lateral displacement within the base-isolation layer 
and other unfavorable seismic responses in the superstructure. Therefore, there are plenty 
of experimental and analytical studies in the existing literature with respect to the seismic 
responses of base-isolated structures under NFFD ground motions, e.g., Alhan and Öncü-
Davas (2016), Sato et al. (2011) and Shi et al. (2014). Given various sources of uncertain-
ties pertaining to the structural system, ground motion characteristics, and the quantifica-
tion of performance level, etc., a probabilistic approach, rather than a deterministic one, 
may provide a more comprehensive and rational framework for the seismic performance 
evaluation of this engineering system.

Probabilistic seismic risk assessment (PSRA) methodology has emerged as a robust 
approach for quantitatively measuring the potential seismic damage and loss consequences 
of engineering structures, which consists of three assessment modules, i.e., seismic haz-
ard analysis, seismic fragility analysis, and seismic loss analysis (Baker 2015). Seismic 
fragility/vulnerability, serving as an indispensable part for the propagation of uncertainty 
in the PSRA, is defined as the probability of a structure or component exceeding a certain 
level of damage state for the given ground motion intensity level (Erdik 2017). Therefore, 
it is imperative to perform the seismic fragility analysis of base-isolation structures under 
NFFD ground motions. Component fragility curves are typically obtained using paramet-
ric or nonparametric approach. The lognormal cumulative distribution function is com-
monly utilized to define the parametric fragility function (Cornell et al. 2002; Zentner et al. 
2017; Zhang and Huo 2009). The Gaussian kernel smoothing method is adopted by Noh 
et al. (2015) to derive the nonparametric fragility functions, and this method is developed 
without any assumption on the probability distribution but at the expense of robustness. 
Zentner (2017) proposed a fragility-generation framework from the basic definition of fra-
gility function, namely, the cumulative conditional probability of the engineering demand 
parameters (EDPs) when knowing the intensity measure (IM) level.

As for the system-level fragility function, consideration of single critical component 
as representative of the system vulnerability was an option (Kim and Shinozuka 2004; 
Murcia-Delso and Shing 2012). Recently, the majority of existing studies just utilized the 
first-order or second-order reliability bounds to estimate the overall system fragility (Dez-
fuli and Alam 2017), whereas, the upper and lower bound provide conservative and un-
conservative estimates of the system fragility, respectively. Wu et  al. (2016) utilized the 
product of conditional marginal method to directly derive the bridge system fragility. Wang 
et  al. (2018) employed the multivariate lognormal probabilistic seismic demand model 
(PSDM) to account for the dependence among different EDPs, and this multivariate PSDM 
is used with the multidimensional performance limit state formula, which defines the fail-
ure domains of the system, to derive the overall fragility. Nielson and DesRoches (2007) 
derived the system-level fragility curves based on the conditional lognormal marginal 
distributions and the pairwise linear correlation coefficients between logarithms of these 
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EDPs. It should be noted that this method is essentially based on the Nataf transformation 
(Liu and Der Kiureghian 1986), and the main limitation lies in that the joint distribution 
of multiple demands are confined to the multivariate lognormal distribution (Lebrun and 
Dutfoy 2009).

This study aims to derive the system-level vulnerability of base-isolated structures 
under NFFD ground motions. To the best of the authors’ knowledge, there is few studies 
in the existing literature associated with the application of copula theory in the field of 
seismic fragility assessment. This study is the first one that employs the copula approach 
to develop the general framework for generating fragility curves at the system level. In 
this framework, to account for the fragility contributions of various correlated components, 
the joint probabilistic seismic demand model (JPSDM) is constructed, which represents 
the joint probability distribution of multiple EDPs conditioned on the IM level. The key 
novelty of this investigation is that the copula theory is utilized to flexibly characterize 
the dependence among multiple EDPs and to further establish the sampling-based JPSDM. 
First, the basic methodology for developing the overall system fragility based on both the 
JPSDM and the associated capacity models of multiple components is presented; then, the 
copula theory for modeling the interrelation of multivariate random variables is briefly 
introduced; next, the sampling-based JPSDM is constructed through the copula approach; 
subsequently, the estimation of the failure probability of the overall system is illustrated; 
finally, the general procedure for generating system-level fragility curves is summarized. 
This general fragility-generation framework is then applied in the case study of a typical 
base-isolated RC frame, and the overall system fragility curves under different damage 
states are obtained. Comparisons between the system-level fragility curves and the compo-
nent-level ones, as well as the first-order bounds, are made. Moreover, the impact of differ-
ent copulas selection on the system-level fragility is investigated.

2  Methodology

Seismic fragility denotes the probability of the seismic demand (D) placed on a structure or 
component exceeding its associated capacity (C) defined at a damage state, conditional on 
a specific IM level, and is given as follows:

For the sake of developing the overall system fragility, the fragility function of indi-
vidual component is derived firstly.

2.1  Component‑level fragility function

The probabilistic seismic demand analysis (PSDA) and the incremental dynamic analysis 
(IDA) are the two commonly-utilized method to develop the component-level vulnerability 
(Zhang and Huo 2009). Given that the scaling of accelerograms to different IM levels in 
the IDA method may induce the bias of structural responses (Luco and Bazzurro 2007) and 
requires extensive computational effort, the PSDA method is utilized herein.

In the PSDA method, the development of component-level fragility function entails 
the convolution of the PSDM, which represents the probability distribution of the EDP 
conditioned on the IM level, with the probabilistic capacity model (or limit/damage state 
model) of each component, which is representative of a measure of its functionality level. 
As suggested by Cornell et al. (2002), for the ith component, the selected EDP and IM are 

(1)Pf = P[D ≥ C |IM]
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all assumed to be lognormally distributed, and the linear regression analysis is utilized to 
relate the natural logarithm of EDP to that of IM:

where ln(Sd,i) (= ln(ai) + bi · ln(IM)) is the conditional mean of EDPi as a function of IM; 
ai and bi are the regression parameters; the residual term ei is considered to be normally 
distributed with zero mean and the standard deviation, βEDP|IM, i :

where edpj is the jth recorded value of  EDPi under consideration (j = 1, …, N). The expres-
sion of Eq. (3) implies that the constant variance of ln(EDPi) is assumed over the entire IM 
range. Therefore, the generic functional form of PSDM is given as follows:

where Φ() is the standard normal cumulative distribution function (CDF); di is the demand 
value defined at a specific limit state.

The capacity model (limit/damage state model) for individual component is quantified 
in terms of the corresponding EDP and is inherent with uncertainty. In general, the lognor-
mal distribution function is utilized to describe the variability in the capacity model, and 
the distribution parameters, i.e., the median Sc and the dispersion βc, are typically deter-
mined based on analytical, experimental results, etc.

Given that the PSDM and the limit state model are both lognormally distributed, the fra-
gility function for each component, as stated in Eq. (1), can be calculated as follows:

Substituting Eq. (2) into Eq. (5), the fragility function of each component can be simpli-
fied as

where the median �i = [ln(Sc,i) − ln(ai)]
/
bi , and the dispersion �i =

√
�2
EDP|IM, i

+ �2
c,i

/
bi.

2.2  System‑level fragility function

As elucidated in Sect. 2.1, PSDMs of various components just describe the probability distri-
bution of each EDP conditioned on the IM level, and are incapable of capturing the correla-
tions among multiple EDPs, resulting in the inadequacy of deriving the system-level fragility. 
Therefore, the methodology for generating fragility curves at the system level that accounts for 

(2)
ln(EDPi) = ln(ai) + bi ⋅ ln(IM)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ln (Sd, i)

+ ei, i = 1,… , n

(3)�EDP∕IM, i =

�∑N

j=1
(ln(edpj) − ln(Sd,i))

2

N − 2

(4)P
[
EDPi ≥ di| IM

]
= 1 − Φ

(
ln(di) − ln(Sd,i)

�EDP|IM,i

)

(5)Pi[D > C�IM] = Φ

⎡⎢⎢⎢⎣

ln
�
Sd,i∕Sc,i

�
�

𝛽2
EDP�IM, i

+ 𝛽2
c,i

⎤⎥⎥⎥⎦

(6)Pi[D > C| IM] = Φ

[
ln(IM) − 𝜆i

𝜁i

]
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the vulnerability contributions of multiple correlated components through the copula approach 
is proposed in the following.

2.2.1  Basic framework

In the proposed methodology, the development of system-level fragility is facilitated by estab-
lishing the JPSDM, which represents the joint probability distribution of multiple correlated 
EDPs conditioned on the IM level. Given that the failure domains of JPSDM are dominated by 
capacity models of these considered components, which are inherent with significant uncer-
tainty, the direct calculation of system-level vulnerability by the integration of the JPSDM 
over the entire failure domains is impractical. Moreover, the overall structure can be reason-
ably regarded as a serial system, in which the failure of any individual segment results in the 
system failure, i.e., Esys =

⋃n

i=1
Ecomp, i , where 

⋃
() is the union operator; Esys, and Ecomp,i are 

the failure event of the system and the ith component, respectively. Therefore, the development 
of sampling-based JPSDM, the role of which is to provide a large set of simulated samples for 
multiple interrelated EDPs under each level of IM, is used with the associated capacity models 
of these components to statistically estimate the system-level fragility.

Since copula function provides a flexible approach for modeling the correlation among 
multivariate random variables, the copula concept is briefly introduced to facilitate the under-
standing of its advantage in representing the interrelation between random variables and the 
JPSDM is then established via this approach.

2.2.2  Copula theory

Copula function can flexibly characterize the nonlinear interrelationship of multivariate ran-
dom variables and has been extensively employed in finances (Eckernkemper 2018), hydrolog-
ical engineering (Tosunoglu and Singh 2018), geotechnical engineering (Wang and Li 2017), 
etc. The critical issues with respect to characterizing, measuring and modeling the dependence 
structure of random variables through copulas are briefly introduced in the following.

2.2.2.1 Definition Copula function C(u1, …, un) is the n-dimensional CDF on a unit hyper-
cube [0,  1]n, whose marginal distributions Ui (i = 1, …, n) follow uniform distributions on [0, 
1], and is given as follows (Nelsen 2006):

in which ui is a sample of Ui. According to Sklar’s theorem (Sklar 1959), the joint CDF of 
a random vector (X1, …, Xn) can be described by a copula function in terms of their mar-
ginal distributions, Fi(Xi) (i = 1, …, n), and is expressed as follows:

in which Ui =  Fi(Xi) and follows the uniform distribution on [0, 1]; ui =  Fi(xi) is the cor-
responding sample value. As implied in Eq. (8), one of salient advantages of copula func-
tion is that the modeling of the marginal distribution and the dependence structure can be 
separated.

The corresponding joint probability density function (PDF) is expressed as

(7)C
(
u1, … , un

)
= P

[
U1 ≤ u1, … , Un ≤ un

]

(8)

F
(
x1,… , x

n

)
= P

[
X1 ≤ x1,… ,X

n
≤ x

n

]
= P

[
F1(X1) ≤ F1(x1),… ,F

n
(X

n
) ≤ F

n
(x

n
)
]

= P
[
U1 ≤ F1(x1),… ,U

n
≤ F

n
(x

n
)
]
= C

(
F1(x1),… ,F

n
(x

n
)
)
= C

(
u1,… , u

n

)
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where fi(xi) is the marginal PDF of xi; and the copula density function c(u1, …, un) is given 
as follows:

As listed in Table 1, the widely-used copula families consist of elliptical copulas and 
Archimedean copulas. Other families of copulas and their separate functional forms can be 
found in Nelsen (2006).

Gaussian copula corresponds to a limiting case of t copula when the degrees-of-free-
dom parameter v approaches infinity. And the remarkable merit of t copula is that it can 
characterize the symmetric upper and lower tail dependence of random variables, whereas, 
the Gaussian copula does not exhibit any tail dependence.

The generic form of the Archimedean family of copulas is expressed as follows:

where ��(t ) is the generator function, and �−1
�
(t ) is the pseudo-inverse of ��(t ) . The main 

discrepancy among the three common Archimedean copulas lies in the adequacy of mod-
eling tail dependence: the Gumbel copula is upper tail dependent, and the Clayton copula 
is lower tail dependent, whereas, the Frank copula captures non tail dependence.

The behavior of tail dependence is pivotal to the dependent phenomena of extreme 
events, and the coefficients of upper and lower tail dependence, λU and λL, for a bivariate 
variable (Xi, Xj) are defined as (Nelsen 2006)

(9)
f
(
x1, … , xn

)
= c

(
u1, … , un

)
⋅

n∏
i=1

fi
(
xi
)

(10)c
(
u1,… , un

)
=

�nC
(
u1,… , un

)
�u1 … �un

(11)C
(
u1, … , un

)
= �−1

�

(
��

(
u1
)
, … , ��

(
un
))

(12)
𝜆U = lim

q→1−
P[Xi > F−1

i
(q)|Xj > F−1

i
(q)]

𝜆L = lim
q→0+

P[Xi < F−1
i
(q)|Xj < F−1

j
(q)]

Table 1  Summary of frequently-used n-dimensional copula functions

Φρ() is the n-dimensional standard Gaussian distribution with the correlation matrix ρ; Φ is the univariate 
standard Gaussian distribution function; tρ,v is the n-dimensional t distribution with the correlation matrix ρ 
and the degrees-of-freedom parameter v; tv is the univariate t distribution function with v

Copula C
(
u1, … , u

n

)
Generator function 
φθ(t)

Range of parameter

Elliptical
 Gaussian Φ

�

(
Φ−1

(
u1

)
, … , Φ−1

(
u
n

))
– [− 1, 1]

 t t
�,�

(
t
−1
�

(
u1

)
, … , t−1

�

(
u
n

))
– [− 1, 1]

Archimedean
 Gumbel exp

�
−
�∑n

i=1
(− ln u

i
)�
�1∕�� (− ln t)� [1, ∞)

 Clayton �∑n

i=1
u
−�
i

− 1
�−1∕�

t
−� − 1 [− 1, ∞)\{0}

 Frank
−

1

�
ln

�
1 +

∏n

i=1 (e
−�ui−1)

(e−�−1)
n−1

�
− ln

e
−� t−1

e−�−1
(− ∞, ∞)\{0}
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where Fi(xi) and Fj(xj) are the CDFs of xi and xj, respectively; and q is the corresponding 
quantile value. The relationship between λU, λL and the copula function is given as follows:

Substituting specific functional forms of these commonly-used copulas into Eq. (13), the 
corresponding upper and lower tail coefficients are listed in Table 2.

2.2.2.2 Estimation of  copula parameters The maximum pseudo-likelihood estimation 
(MPLE) is considered as a robust choice to estimate the copula parameters (Kim et al. 2007), 
and the log-likelihood function L(θ) is expressed as follows:

where n denotes the number of copula dimensions; s is the sample size; 
(
ũ
i,1
,… , ũ

i,n

)
 is the 

pseudo-observation of (xi,1, …, xi,n) (i = 1, …,s) and are calculated as follows (Genest and 
Favre 2007): ũ

i,j
= rank(xi,j)∕ (s + 1) , where rank(xi,j) is the rank of xi,j among (x1,j, …, xs,j) 

(j = 1, …, n) in ascending order. The copula parameters are estimated by

where Θ is the considered range of θ.
The inversion of Kendall’s τ method is another popular semi-parametric method for esti-

mating copula parameters in multivariate elliptical copulas and bivariate Archimedean copu-
las. Kendall correlation coefficient τ is a measure of dependence and is defined as

(13)
�U = lim

t→1−

1 − 2t + C(t, t; �)

1 − t

�L = lim
t→0+

C(t, t; �)

t

(14)L(𝜃) = ln

(
s∏

i=1

c
(
ũ
i,1
,… , ũ

i,n
;𝜃
))

=

s∑
i=1

ln c
(
ũ
i,1
,… , ũ

i,n
; 𝜃
)

(15)�̂�ML = argmax
𝜃∈Θ

L(𝜃)

(16)𝜏
(
Xi, Xj

)
= P

[(
Xi − X̃i

)(
Xj − X̃j

)
> 0

]
− P

[(
Xi − X̃i

)(
Xj − X̃j

)
< 0

]

Table 2  Measures of dependence for widely-used bivariate copulas

tv+1() is the univariate t distribution with the degrees-of-freedom parameter v + 1

Copula Relationship between the copula 
parameter and the Kendall’s τ

Upper tail coefficient λU Lower tail coef-
ficient λL

Elliptical
 Gaussian � = sin(� �∕2) 0 0
 t � = sin(� �∕2)

2 − 2t
v+1

�√
v+1

√
1−�√

1+�

�

Archimedean
 Gumbel � = 1∕(1 − �) 2−21∕� 0
 Clayton � = 2�∕(1 − �) 0 2−1∕�

 Frank � = 1 −
4

�
+

4

�2
∫ �

0

t

exp(t)−1
dt 0 0
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in which 
(
X̃i, X̃j

)
 is an independent copy of (Xi, Xj).

For multivariate elliptical copulas, the one-to-one mapping between the Kendall’s τ 
and the copula parameter, i.e., the element in the linear correlation matrix ρ, is given as 
follows:

For bivariate Archimedean copulas, the general relationship between the Kendall’s τ 
and the generator function φθ() is given as follows:

Substituting the specific form of φθ(t) for each Archimedean copula into Eq.  (18), the 
resulting expression is presented in Table 2. In the case of small samples characterized by 
a low degree of dependence, the inversion of Kendall’s τ method is more efficient by com-
parison with the MPLE (Kojadinovic and Yan 2010).

2.2.2.3 Identification of  the  best‑fit copula Once copula parameters have been esti-
mated, the following step is to select the copula that best represents the dependence of the 
considered variables. In this study, the goodness-of-fit of each copula function is exam-
ined in terms of the Akaike Information Criterion (AIC) (Akaike 1974) or the Bayesian 
Information Criterion (BIC) (Schwarz 1978), which are given as follows:

where ln c(u1i, …, uni) is the maximized log-likelihood values of copula density func-
tion (Eq. (14)); h is the number of copula parameters. A copula function corresponding to 
the minimum AIC or BIC value is regarded as the best-fit copula among these candidate 
copulas.

2.2.2.4 Copula‑based sampling method (CBSM) The role of CBSM (Wu 2013) is to 
generate a large ensemble of simulated samples of the n-variate random vector (u1, …, 
un) on the unit hypercube [0,1]n based on the conditional inverse method (Rosenblatt 
1952) for the specific copula function, therefore, the dependence structure of the original 
data set can be reconstructed. By virtue of the CBSM, the failure probability of a stochas-
tic event can be statistically estimated by the ratio of the number of failure samples, nf, to 
that of the total generated samples, nt, i.e., Pf =  nf/nt. In general, when nt is greater than 
100/Pf, the accuracy can be satisfactory.

The analytical work associated with the estimation of copula parameters, the quanti-
tative identification of best-fit copula, and the copula sample realizations, is performed 

(17)�
(
Xi, Xj

)
=

2

�
sin−1

(
�
(
Xi,Xj

))

(18)� = 1 + 4∫
1

0

��(t)

�−1
�
(t)

dt

(19)AIC = −2

s∑
i=1

ln c(u1i, … , uni) + 2k

(20)BIC = −2

s∑
i=1

ln c(u1i, … , uni) + h ln s
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based on Matlab (MathWorks 2018) and the package ‘copula’ (Yan 2007) in the statisti-
cal software R (R Development Core Team 2018).

2.2.3  Development of sampling‑based JPSDM

The role of sampling-based JPSDM is to obtain sample realizations of multiple cor-
related EDPs for each level of IM. Since the copula function is rank-dependent and is 
invariant against strictly monotonic transformation of random variables, the dependence 
structure among ln(EDPi) (i = 1, …, n) modeled by the copula approach is the same as 
that among their corresponding residual terms ei in each PSDM [Eq. (2)].

First, as for the marginal distribution modeling, ln(EDPi) follow normal distribution 
(namely,  EDPi follow lognormal distribution), which is due to the fact that the residual 
term ei in each PSDM is required to satisfy the normal requirement underlying the linear 
regression analysis. At each level of IM, the mean of ln(EDPi) is the corresponding con-
ditional mean of each PSDM, i.e., ln(Sd,i) = ln(ai) + bi·ln(IM), and the standard deviation 
of ln(EDPi) is equal to that of the residual term ei in each PSDM, i.e., βEDP|IM,i, which is 
constant in the whole IM range. Therefore, it can be inferred that ln(EDPi) follows the 
normal distribution with the mean ln(Sd,i), which is conditioned on the IM level, and the 
constant standard deviation βEDP|IM,i.

Then, the dependence among residual terms ei (i = 1, …, n) of each PSDM is mod-
eled via the copula approach, and the best-fit copula is quantitatively identified in terms 
of AIC or BIC values.

Finally, according to the best-fit copula function for (e1, …, en), a large set of sam-
ple realizations of (u1, …, un) on the unit hypercube [0,  1]n can be generated based on 
the CBSM, and the simulated samples of (ln(EDP1), …, ln(EDPn)) can be obtained by 
the isoprobabilistic transformation based on their respective marginal distributions, i.e., 
ln(EDPi) = Φi

−1(ui) (i = 1, …, n), where Φi() is the separate CDF of the conditional nor-
mal marginal function for ln(EDPi). Therefore, random samples of multiple correlated 
EDPs  (EDP1, …,  EDPn), under each IM level can be easily obtained.

Figure  1 shows the flowchart for sample realizations of multiple correlated EDPs 
under each level of IM. It is obvious that this method reasonably accounts for the non-
linear dependence among multiple EDPs in the whole system.

Fig. 1  Flowchart for sample realizations of multiple correlated EDPs under each IM level
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2.2.4  The failure probability of the system

The sampling-based JPSDM, along with the capacity models of multiple considered 
components, is utilized to estimate the system-level failure probability, Pf,sys, under each 
level of IM. Specifically,  106 sample realizations of both the JPSDM (i.e., samples of 
multiple correlated EDPs  (EDP1,  EDP2, …,  EDPn), as presented in Fig. 1) and the asso-
ciated capacity models [i.e., capacity samples of different components  (C1,  C2, …,  Cn)] 
for a specific IM level are generated. Under the assumption of a serial system, the prob-
ability of the demand placed on the system exceeding its capacity for this IM level is 
estimated, as presented in Fig. 2. With the increasing level of IM, a set of sample values 
for (IM, Pf,sys) are obtained.

2.2.5  General procedure

The basic procedure for developing the system-level fragility curve is summarized as 
follows:

(1) Establishing analytical model for the target structure and providing a suite of ground 
motions that represents salient characteristics of the region being considered;

(1) Selecting suitable IM and  EDPi (i = 1, …, n) in the whole system, and determining the 
corresponding capacity models of different components;

(3) Nonlinear time history analyses are performed based on the established analytical 
model and the suite of ground motions, where the IM and different EDPs results are 
recorded;

(4) For each  EDPi, the regression analysis is performed based on the recorded results to 
obtain the regression parameters (ai, bi, and βEDP|IM,i) in each PSDM, and the marginal 
distribution conditioned on the IM level is established (Sect. 2.2.1);

(5) The best-fit copula for characterizing the dependence among the residual term ei (i = 1, 
…, n) of each PSDM is quantitatively identified based on the metrics of AIC and BIC 
(Sect. 2.2.2.3);

(6) The sampling-based JPSDM is established based on the best-fit copula and the fitted 
conditional marginal distribution for a specified IM level (Sect. 2.2.3);

Fig. 2  Flowchart for the estimation of the failure probability of the system for a given IM level



www.manaraa.com

5681Bull Earthquake Eng (2018) 16:5671–5696 

1 3

(7) The failure probability of the whole system, Pf,sys, for a given IM level is calculated 
by virtue of both the established JPSDM and capacity models of these components 
(Sect. 2.2.4);

(8) The step (7) is repeated for the increasing level of IM, resulting in a set of sample values 
for (IM, Pf,sys);

(9) Analogous to component-level fragility function presented in Eq. (6), system-level 
fragility function is also assumed to follow lognormal distribution:

where the median �sys and the dispersion �sys are obtained by the maximum likelihood 
estimation (MLE) based on the set of (IM, Pf,sys) data. Figure 3 illustrates a schematic 
of the general framework for the development of overall system fragility curves.

3  Seismic fragility analysis of seismically‑isolated structures

This proposed methodology for generating system-level fragility curves is employed in 
the case of a typical based-isolated RC frame subjected to NFFD ground motions. For 
brevity, only the effect of record-to-record variability is considered and the uncertainty 
in the structural model is neglected.

(21)P [DS|IM] = Φ

[
ln(IM) − �sys

�sys

]

Joint probability seismic demand  model

System 
failure 
samples

LSi

LS
j

EDPi

ED
P j

ln(IM)

ln
(E
D
P i

)

Probabilistic seismic demand models

(IM, Pf,sys)

System fragility curves

IM

MLE

P[
D

>C
|IM

]

Best-fit Copula

ui=rank(ei)/(N+1)

u i
=r

an
k(
e i)

/(N
+1

)

0
0

1

1

Dependence modeling of EDPs

Ground 
motion 
suites

Structural 
modelling

Empirical data

Probabilistic capacity model

LS-1

LS-2

LS-3

LS-4

P[
LS

|E
D
P i

]

EDPi

Fig. 3  The general framework for developing copula-based system fragility curves
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3.1  Base‑isolated structure description and analytical modeling

3.1.1  The layout of base‑isolated structure

A typical six-story base-isolated RC frame is designed according to the current Chinese 
seismic code (GB 50011-2010) (Ministry of Housing and Urban–Rural Development of 
the People’s Republic of China 2010). The main considered design factors include: the site 
condition [medium-stiff soil (site-class II)], the design earthquake group (1st group); high-
intensity area (the fortification intensity is 8, and the design basic seismic acceleration is 
0.2 g); moreover, based on the provisions in the Clause 12.2.2.2 of this code, the impact of 
near-fault effects is incorporated by multiplying the design response spectrum by the near-
field affected factor over the whole range of periods, which is set to 1.5 herein. The calcu-
lated design spectrum is presented in Fig. 5a. Lead-rubber bearing (LRB) is selected as the 
bearing type, and the plan view and elevation view of this frame structure are illustrated in 
Fig. 4a, b, respectively. In view of the regularity and symmetry of this structure, the plane 
frame is selected as the analytical object.

Table 3 provides the information on the reinforcement details, the section geometry of 
columns and beams. And the design parameters of LRBs are presented in Table 4. It is 
noted that the enhanced reinforcement details in the base-isolation layer, which ensures this 
layer to behave as a rigid diagram, is beneficial to the effectiveness of base isolation.

3.1.2  The analytical model

The analytical model is established in OpenSees (McKenna et al. 2000). The superstruc-
ture is modeled using the nonlinear force-based element with fiber-defined cross-section. 
The uniaxial Menegotto-Pinto model (Filippou et  al. 1983) is employed to represent the 
steel material, with the yield strength and the modulus of elasticity equal to 335  MPa 
and 2.1 × 105 MPa, respectively. The Kent-Park model with linear tensile strength (Mohd 
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Fig. 4  Schematic of the seismically-isolated RC frame: a plan view, b elevation view
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Yassin 1994) is used to describe the concrete material, and the compression strength and 
the modulus of elasticity are 24.75 MPa and 2.98 × 104 MPa, respectively. The confinement 
effect of the concrete section, which is manifested by the increase of the maximum com-
pressive stress and the ultimate strain, is incorporated based on the reinforcement detailing.

LRBs are modeled using the ElastomericBearing element (Schellenberg et al. 2015). Since 
the first shape factor S1 = 20 and the second shape factor S2 = 5, the failure mode of LRBs 
under combined compression and shear is dominated by the shear failure, rather than the criti-
cal buckling behavior (Montuori et al. 2016); moreover, the reduced compression stiffness due 

Table 3  The reinforcement details, the section geometry of beams and columns

Member Section Longitudinal reinforce-
ment

Hooped 
reinforce-
ment

Width (mm) Height (mm) Top Bottom

Superstructure edge beam 300 500 4Φ18 2Φ25 Φ8@150
Superstructure middle beam 300 500 4Φ18 2Φ20 Φ8@150
Isolation layer beam 300 600 4Φ20 4Φ25 Φ8@100
column 500 500 8Φ18 Φ8@150

Table 4  Parameters of LRBs in 
current study

Parameter Notation Unit Value

Outer diameter D mm 400.0
Lead-core diameter d mm 80.0
Thickness of rubber layers nr ×  tr mm 16 × 5
Thickness of steel shims ns ×  ts mm 15 × 3
Thickness of end plate np × tp mm 2 × 25
Shear modulus G MPa 0.3
First shape factor S1 – 20.0
Second shape factor S2 – 5.0
Characteristic strength Qd kN 50.0
Post-yield stiffness Kd kN/m 500.0
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Fig. 5  The information of this suite of input ground motions: a response spectra of the ground motion suite 
and the design spectrum; b the distribution of  Sa values of the suite ground motions
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to lateral offset is still high in the considered range of horizontal displacements (Warn et al. 
2007). Therefore, the linear model with constant stiffness (Warn et al. 2007) in assigned in 
the compressive direction. Given that the quantitative measures of different damage states for 
bearings in tension based on experimental or analytical results are relatively scare (Kumar 
et al. 2015), the tensile failure of bearings is not incorporated, and the constant tension stiff-
ness that equals the compression stiffness is assumed in the tensile direction. The Bouc-Wen 
model is utilized to characterize the nonlinear hysteretic behavior in the horizontal direction. 
The hardening component parameters α1, α2, and μ are separately assumed to be 0.1, 0, and 
2 (Buckle et al. 2006). The parameters γ and β control the shape of the hysteretic loop and 
are taken as 0.5 and 0.5, respectively (Casciati 1989; Constantinou et al. 1990; Huang 2002); 
the parameter η dominates the sharpness of the transition from elastic to inelastic state and is 
assumed to be 2 (Huang 2002).

Moreover, 5% Rayleigh damping is imposed in the structural system. The fundamental-
mode period of the non-isolated frame and the seismically-isolated one are 0.657 and 1.126 s, 
respectively. Obviously, the introduction of base-isolation bearings effectively lengthens the 
natural period of engineering structures and, as a result, reduces the seismic inertial forces 
transferred to the superstructure.

3.2  Ground motion suite

In light of the scarcity of recorded NFFD ground motions, a scenario-based stochastic ground 
motion model developed by Zhou et al. (2018) is employed herein. This stochastic model is 
established in the strongest pulse orientation (Shahi and Baker 2014) and combines the veloc-
ity pulse part, which is represented by Gabor wavelet model (Dickinson and Gavin 2011), 
and the high-frequency content, which is characterized by the modulated filtered white-noise 
model (Rezaeian and Der Kiureghian 2008). This scenario-based model effectively captures 
the inherent variability associated with seismic source, path and soil condition, etc.

In order to be compatible with the seismic scenario where this base-isolated RC frame is 
located, the ground motion suite is generated for the following seismic scenarios: moment 
magnitude Mw (6.5, 7.0, and 7.5), source-to-site distance Rrup (5, 10, and 15 km), medium-stiff 
soil class (shear wave velocity Vs,30 = 300, 400, and 500 m/s). Therefore, there are a total of 27 
seismic scenarios, and 6 ground motions are generated for each scenario, amounting to 162 
synthetic ground motions in total. It’s worth noting that the number of this suite of synthetic 
ground motions far exceeds the minimum number of the required motions suggested by Pahla-
van et al. (2016), indicating that these synthetic motions are sufficient to represent the salient 
features of NFFD ground motions in the region under consideration.

Comparisons between the design spectrum, mean and mean ± 1 standard deviation 
response spectra of these synthetic ground motions are presented in Fig. 5a. It is indicated 
that the mean response spectrum is approximately consistent with the design spectrum that 
accounts for near-fault effects. Whereas, the mean spectrum is observed to be slightly larger 
than the design spectrum in the range of 1–3.5 s, which can be attributed to the presence of 
velocity pulse in NFFD ground motions.

3.3  The selection of IM and EDPs

The selection of an optimal IM is a crucial part in seismic vulnerability assessment, and 
the corresponding metrics include practicality, efficiency, sufficiency, and hazard comput-
ability (Padgett et al. 2008). In this study, the issue regarding choosing the appropriate IM 
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is not further discussed. Based on the existing literatures (Guan et al. 2015; Hariri-Ardebili 
and Saouma 2016) and our preliminary analysis results, the spectral acceleration at the iso-
lation period, Sa(Tiso, 5%), is selected as the IM parameter here. For brevity, Sa(Tiso, 5%) is 
simplified as Sa in the subsequent section. Figure 5b plots the distribution of Sa values for 
this suite of synthetic ground motions, and it is observed that this ground motion set covers 
a relatively broad range of Sa values.

The base-isolation layer and the superstructure are chosen as the two major vulnerable 
components of this structural system, and the damage states for the two ingredients are 
quantified in terms of corresponding EDPs. As stated in Sect. 3.1.2, the failure mode of 
LRBs is assumed to be dominated by the shear failure, and is quantitatively determined in 
terms of the maximum shear strain (γs), namely, γs = ub/Tr, ub is the lateral displacement, 
and Tr is the total thickness of rubber layers. The damage state for the superstructure is 
quantified by the maximum inter-story drift ratio θIS, i.e., θIS =  uIS/h, uIS denotes the inter-
story drift, and h is the story height. Therefore, γs and θIS are the two selected EDPs in this 
system.

Given that this stochastic NFFD model is a single-component model (i.e., in the ori-
entation of the strongest pulse within the horizontal plane), the IM and EDPs, as well as 
capacities, are all taken as one-component variables.

3.4  Limit state (capacity) models

Four levels of damage states are typically employed in the seismic fragility analysis (i.e., 
slight, moderate, extensive, and collapse), and are defined in terms of the selected EDPs. 
Based on recommendations from previous studies (Dezfuli and Alam 2017; Nielson and 
DesRoches 2007; Ramanathan et al. 2012), the coefficients of variation (COV) is utilized 
to characterize the uncertainty associated with each damage state. The smaller value of 
COV (i.e., 0.25) is assumed in slight and moderate damage states, and the relatively larger 
COV value (i.e., 0.5) is assigned in extensive and collapse limit states. The dispersion βc is 
calculated as �c =

√
ln(1 + COV2) , and the corresponding values of 0.24 and 0.47 are sep-

arately obtained. The distribution parameters for capacity models of these two components 
are given in Table 5. It’s worth noting that the correlation of these component capacities is 
not considered, although the dependence among these component demands are incorpo-
rated in this study.

In the actual process of calculation, the maximum base displacement, ub= γs× Tr, and the 
maximum inter-story drift in the superstructure, uIS= θIS× h, are utilized for convenience.

3.5  The establishment of JPSDM

For the sake of constructing the sampling-based JPSDM, first, the PSDM of each  EDPi 
is developed by the linear regression analysis; then, the best-fit copula for modeling the 
dependence structure of e1 and e2 in the two PSDMs is quantitatively identified in terms of 

Table 5  Lognormal parameters 
for capacity models of the two 
components

i EDP LS1 LS2 LS3 LS4

Sc,1 βc,1 Sc,2 βc,2 Sc,3 βc,3 Sc,4 βc,4

1 γs 100% 0.24 150% 0.24 200% 0.47 250% 0.47
2 θIS 1/550 0.24 1/250 0.24 1/125 0.47 1/50 0.47
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AIC and BIC values; subsequently, the sampling-based JPSDM, which provides a large set 
of simulated samples of the two correlated EDPs under each IM level, is constructed based 
on the best-fit copula and the fitted conditional lognormal marginal distribution; finally, 
this JPSDM is utilized with the capacity models of these two components to estimate Pf,sys 
at each level of IM, and the MLE is adopted to obtain the system-level fragility function.

3.5.1  The PSDMs of multiple EDPs

Based on the structural model and the synthetic ground motions suite, 162 nonlinear 
time-history analyses are performed, and the maximum demand quantities, including the 
horizontal displacement in the base-isolation layer and the lateral drift of each floor, are 
recorded. It is found that the horizontal displacement demand is, to some extent, linearly 
distributed along the height of superstructure, as the seismic response is dominated by the 
first mode shape and, therefore, the displacement demand is concentrated in the base-isola-
tion layer, due to the presence of laterally-flexible base-isolation layer. The maximum inter-
story drift usually corresponds to that at the first story.

The linear regression analysis is performed, and the mean and mean ± 1 standard devia-
tion of PSDMs in the log–log space for these two EDPs are plotted in Fig. 6. The estimated 
parameters (ai, bi, and βEDP/IM,i) of PSDMs, as well as the coefficients of determination 
R2, for the two considered EDPs are listed in Table 6, and the relatively larger value of R2 
implies that the linear regression in the log–log space for these two EDPs is reasonable.

Based on the two established PSDMs, the normal marginal distribution parameters 
(ln(Sd,i), βEDP|IM,i) of each ln(EDPi), which is conditioned on the IM level, can be obtained 
easily. And it should be noted that the constant variance for the marginal distribution is 
assumed in the whole IM range.

To test the normality requirement of the residual term e1 and e2 in the two PSDMs, the 
quantile–quantile (Q–Q) plots of e1 and e2 are separately shown in Fig. 7a, b. In the Q–Q 
plot, the abscissa axis and the vertical axis represent the theoretical quantile values from 
a normal distribution and the quantile values of sample data, respectively. It is observed 
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Fig. 6  PSDMs for different EDPs: a  EDP1; b  EDP2

Table 6  The regression 
parameters of PSDM for each 
component

i a b βEDP|IM R2

ln(EDP1) 288.39 0.98 0.324 0.708
ln(EDP2) 58.11 1.23 0.433 0.681
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that these residual data are almost aligned with the diagonal line, confirming that the two 
residual terms e1 and e2 satisfy the normality requirement underlying the linear regression 
process.

3.5.2  Dependence modeling of multiple EDPs

The copula approach is employed to characterize the dependence structure of these two 
residual term, e1 and e2. First, to visually inspect the statistical characteristic of e1 and e2, 
scatter plots of e1 and e2 and those of their pseudo-observations, u1 and u2, are shown in 
Fig. 8a, b, respectively. Positive correlation and symmetry are observed in e1–e2 and u1–u2 
data. Moreover, the upper and lower tail dependence of u1 and u2 data are also manifested 
to some extent. These observations indicate that the t copula is likely to be suitable for the 
considered residual data.

To quantitatively identify the best-fit copula for describing the correlation between e1 
and e2, the five copula functions mentioned in Sect. 2.2.2.1 are fitted to the residual data by 
the MPLE method, and the estimated values of copula parameters for these five copulas are 
presented in Table 7. In addition, the estimated copula parameters based on the inversion 

(a) (b)

Fig. 7  Q-Q plots of the residual terms: a e1, b e2

(a) (b)

Fig. 8  Scatter plots of the residual term, e1 and e2, and their pseudo observations, u1 and u2: a e1–e2, b 
u1–u2
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of Kendall’s τ method are presented in parentheses in Table 7. It is found that the estimated 
copula parameters based on these two methods are almost identical, infirming the reason-
ability of these two methods being used. And the estimated copula parameters values from 
the MPLE method is further used in the subsequent part.

As presented in Table 7, the goodness-of-fit of these five candidate copulas is examined 
in terms of AIC and BIC values, and the minimum values of AIC and BIC are marked as 
bold. It is observed that the t copula is quantified as the best-fit copula among these copu-
las, corresponding to the minimum value of both AIC and BIC. However, the difference 
between Gaussian and t copula in terms of AIC and BIC values is insignificant, indicating 
the similar modeling capacity of these two copulas. This behavior can also be reflected by 
the relatively large estimated value of the degrees-of-freedom parameter v in the t copula, 
given that Gaussian copula corresponds to the t copula with v = ∞.

The left column in Fig. 9 compares the original data (162 samples) with the simulated 
data (5 × 105 samples) of u1 and u2 for the five candidate copulas based on their fitted cop-
ula parameters. It is found that the simulating capacity of the Clayton copula is the worst, 
which is distinctly reflected by the fact that more simulated samples are observed in the 
upper-left and the lower-right corners. The inferior behavior of the Clayton copula is also 
manifested by the maximum AIC and BIC values among these five copulas in the model 
selection. The t, Gaussian, and Frank copulas simulate the original residual data better, and 
their AIC and BIC values are relatively similar. However, as mentioned in Sect. 2.2.2.1, the 
Gaussian and Frank copulas cannot represent the upper and lower tail dependence of the 
considered data. The observation in Fig. 9c indicates that the performance of the best-fit 
t copula for describing the dependence between u1 and u2 is satisfactory, as it effectively 
characterizes both the symmetry and the tail dependence of u1–u2.

Furthermore, to test the overall simulating capacity for the joint probability character-
istics of the two residual terms e1 and e2, the original data (blue) and the simulated data 
(black) of e1 and e2 based on both the five fitted copula functions and the fitted normal 
marginal distributions are compared in the right column in Fig. 9. It is noted that ei ~ N(0, 
βEDP|IM,i), (i = 1, 2), and the simulated samples of ei are obtained by the isoprobabilistic 
transformation of those of ui, namely, ei = Φi

−1(ui), where Φi
−1() is the respective inverse 

CDF of ei.
Similarly, the better simulating performance of t copula is observed by comparison with 

other copulas. It should be pointed out that the simulated results of u1–u2 are solely domi-
nated by the copula modeling, however, the simulated results of e1–e2 are influenced by both 
the marginal distribution fitting and the copula modeling. It can be concluded that the com-
bination of t copula, which is quantitatively identified as the best-fit copula function for the 
dependence modeling, and the normal marginal distribution, which is required in the linear 

Table 7  The obtained AIC and 
BIC values for the candidate 
copulas

Copula Estimated parameters AIC BIC

Gaussian ρ = 0.6398 (0.6412) − 59.21 − 56.31
t ρ = 0.6488 (0.6412) − 59.36 − 56.45

v = 192.4 (192.5)
Gumbel θ = 1.7897 (1.8164) − 49.49 − 46.58
Clayton θ = 1.2918 (1.2743) − 36.07 − 33.16
Frank θ = 4.8957 (4.886) − 56.84 − 53.93
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(a) (b)

(c) (d)
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Fig. 9  Comparison between the original data and the simulated data of u1–u2 and e1–e2 based on differ-
ent copulas: a Gaussian (u1–u2), b Gaussian (e1–e2), c t (u1–u2), d t (e1–e2), e Gumbel (u1–u2), f Gumbel 
(e1–e2), g Clayton (u1–u2), h Clayton (e1–e2), i Frank (u1–u2), j Frank (e1–e2)
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regression analysis, can reasonably describe the joint probability distribution of the two resid-
ual terms, e1 and e2.

Therefore, both the best-fit t copula and the lognormal marginal distribution, which is con-
ditioned on the IM level, are capable of representing the conditional joint probability char-
acteristics of the two considered EDPs under each level of IM, and are further employed to 
establish the sampling-based JPSDM in the subsequent section.

3.6  System fragility curves

According to Sect. 2.2.3, the sampling-based JPSDM, which generates a large set of simulated 
samples for the two correlated EDPs under each level of IM, is constructed based on the com-
bination of the best-fit t copula function and their respective conditional lognormal marginal 
distributions. Under the assumption of a serial system, the system-level fragility curve can be 
generated by virtue of both the established JPSDM and capacity models of these two consid-
ered components (Sect. 2.2.4). Figure 10 presents the overall system fragility curves under 
different damage states.

Based on the formulation presented in Eq. (6), the component-level fragility curves at dif-
ferent damage states are developed, which not only reflect the relative vulnerability of different 
components, but also provide insights into the most vulnerable component in the system. As 
presented in Fig. 10, the shift in the vulnerability of components is observed with the change 
of damage states. In the slight and moderate damage states, the vulnerability of the superstruc-
ture is more significant than that of the base-isolation layer; and the similar fragility contribu-
tions of these two components are observed in the extensive damage state; whereas, the bear-
ing response dominates the system vulnerability in the complete damage state. Comparisons 
between the system-level and the two component-level fragility curves under various damage 
states show that the system-level fragility is more significant than that of any individual com-
ponent, which is attributed to the underlying assumption of the serial system in this study.

For comparison, the first-order reliability bounds of the system-level fragility Pf,sys is cal-
culated in terms of the component-level fragility, Pf,i (i = 1, …, n), and are given as follows 
(Ezzeldin et al. 2017):

(22)
n

max
i=1

(
Pf ,i

) ≤ Pf ,sys ≤ 1 −

n∏
i=1

(
1 − Pf ,i

)

(i) (j)

Fig. 9  (continued)



www.manaraa.com

5691Bull Earthquake Eng (2018) 16:5671–5696 

1 3

where the lower bound corresponds to the maximum component fragility, assuming the 
complete correlation between different components; whereas, the upper bound assumes the 
independence among various components. The first-order bounds for the system-level fra-
gility curves in different limit states are presented in Fig. 10 as well. It is found that the 
lower bound coincides with the fragility curve of the superstructure in slight and moderate 
damage states, as the superstructure governs the system fragility under these two damage 
states; whereas, the lower bound corresponds to the fragility of bearing in the other two 
damage states. The system-level fragility curve is located in the interval between the upper 
and lower bounds, and the discrepancy between the upper and lower bounds is dominated 
by the relative fragility contributions of different components. In the extensive damage 
state, the base-isolation layer and the superstructure have similar fragility contributions, 
and the gap between the bounds is relatively distinct. Under that circumstance, it is vital to 
directly generating system-level fragility curve based on the proposed methodology, rather 
than using the first-order bounds. Whereas, the relatively narrow bounds are observed in 
the other three limit states, due to the existence of the predominantly fragile component.

Moreover, the system-level fragility curve is observed to be closer to the upper bound 
in the range of higher IM level, denoting the independence between the two compo-
nents. However, the estimated value of Kendall’s τ coefficient between these two com-
ponents based on the original data set is 0.4495, indicating the existence of relatively 
medium correlation. This discrepancy may be attributed to the fact that there is a rela-
tively smaller number of observed e1–e2 data in the higher IM level, giving rise to the 
inaccuracy of estimating system-level fragility to some extent.

(a) (b)

(c) (d)

Fig. 10  The system- and component- level fragility curves, as well as the first-order bounds, under differ-
ent limit states: a slight, b moderate, c extensive, d complete
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To investigate the impact of different copulas selection on the development of the 
overall system fragility, comparisons between fragility curves derived from the five 
copula functions are illustrated in Fig. 11. It is observed that the influence of different 
copulas on the system-level fragility varies depending on the damage state of interest. 
In essence, this observed behavior is also attributed to the relative fragility of different 
components. At the extensive damage state, the vulnerability contribution of the base-
isolation layer is similar to that of the superstructure (as seen in Fig. 10c), and the dif-
ference between these five copulas is relatively larger. In that case, the quantitative iden-
tification of the best-fit copula function for modeling the dependence among multiple 
EDPs is essential to the accuracy of the system-level fragility. Whereas, in the remain-
ing three damage states, accounting for the existence of predominantly-vulnerable com-
ponent, the discrepancy of system-level fragility curves using different copulas is rela-
tively subtle. Moreover, the methodology proposed by Nielson and DesRoches (2007) 
are constructed based on the Nataf transformation, which essentially corresponds to the 
Gaussian copula dependence structure (Lebrun and Dutfoy 2009). Though the differ-
ence of the system-level fragility between the Gaussian copula and best-fit t copula is 
slight in this case study, the proposed method quantitatively identifies the best-fit copula 
among candidate copulas without suffering from the restriction of the inherent Gaussian 
copula assumption in Nielson and DesRoches (2007), and is a more flexible and general 
approach to develop the fragility curves at the system level.

(a) (b)

(c) (d)

Fig. 11  Comparison of system-level fragility curves derived from different copula functions at various 
damage states: a slight, b moderate, c extensive, d complete
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4  Conclusions

This study investigates the seismic vulnerability of base-isolated structures under NFFD 
ground motions, and the emphasis of this study is placed on proposing a general frame-
work for deriving the system-level fragility via the copula approach. In this framework, to 
account for the vulnerability contributions of multiple correlated components, the JPSDM 
is constructed, where the copula function is utilized to characterize the dependence struc-
ture among multiple component demands, and the overall system fragility is eventually 
generated based on both the established JPSDM and the capacity models of these consid-
ered components. In the case study of a typical base-isolation RC frame, the maximum 
lateral displacement in the base-isolation layer and the peak inter-story drift in the super-
structure are simply selected as the two major component demands. Comparisons between 
the system-level and component-level fragility curves, as well as the upper and lower first-
order bounds, are made. Furthermore, the impact of selecting different copulas on the over-
all system fragility is investigated. Main conclusions are drawn as follows:

(1) Based on the metrics of both AIC and BIC values, the t copula is quantitatively identi-
fied as the best-fit copula for modeling the dependence among the two residual terms e1 
and e2 in each PSDM, as it effectively captures the symmetry and the tail dependence. 
Therefore, the combination of the best-fit t copula and the fitted lognormal marginal 
distributions, which are conditioned on the IM level, is capable of representing the 
joint probability distribution of these two EDPs under each level of IM, and is further 
utilized in the construction of sampling-based JPSDM.

(2) The shift in the fragility of components is observed with the change of four damage 
states, and the seismic fragility of the system is more significant than that of any indi-
vidual component. When multiple components have similar fragility contributions, the 
discrepancy between the upper and lower first-order bounds is significant; under that 
circumstance, it is crucial to directly derive the system-level fragility curves based on 
the proposed methodology, rather than estimating it by the first-order bounds. Whereas, 
the width of the upper and lower bounds is relatively smaller in the other three damage 
states, as the existence of the predominantly-fragile component.

(3) The impact of different copulas selection on the development of system-level fragility 
curve is essentially dominated by the relative fragility of different components. When 
multiple components have similar fragility contributions, the difference among various 
copulas is slightly greater; in that case, the quantitative identification of the best-fit 
copula function is of vital importance to the accuracy of the system-level fragility 
curves.

It should be noted that the analysis results are mainly related to the considered structure 
type, the number and type of structural components, and the earthquake characteristic, etc. 
Whereas, this general framework proposed in this study for developing the system-level 
fragility still holds, when the vulnerability contributions of multiple correlated components 
in the system are incorporated. Furthermore, this copula-based framework can be easily 
extended to the case where the non-lognormal marginal distributions are encountered, and 
this flexibility is attributed to the separation of marginal modeling and the dependence 
modeling in the copula method.
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